Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Adv Sci (Weinh) ; 8(18): e2101155, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316191

ABSTRACT

Accessible and adaptable nucleic acid diagnostics remains a critical challenge in managing the evolving COVID-19 pandemic. Here, an integrated molecular nanotechnology that enables direct and programmable detection of SARS-CoV-2 RNA targets in native patient specimens is reported. Termed synergistic coupling of responsive equilibrium in enzymatic network (SCREEN), the technology leverages tunable, catalytic molecular nanostructures to establish an interconnected, collaborative architecture. SCREEN mimics the extraordinary organization and functionality of cellular signaling cascades. Through programmable enzyme-DNA nanostructures, SCREEN activates upon interaction with different RNA targets to initiate multi-enzyme catalysis; through system-wide favorable equilibrium shifting, SCREEN directly transduces a single target binding into an amplified electrical signal. To establish collaborative equilibrium coupling in the architecture, a computational model that simulates all reactions to predict overall performance and optimize assay configuration is developed. The developed platform achieves direct and sensitive RNA detection (approaching single-copy detection), fast response (assay reaction is completed within 30 min at room temperature), and robust programmability (across different genetic loci of SARS-CoV-2). When clinically evaluated, the technology demonstrates robust and direct detection in clinical swab lysates to accurately diagnose COVID-19 patients.


Subject(s)
COVID-19/virology , DNA, Catalytic/genetics , Nanostructures/chemistry , SARS-CoV-2/genetics , Humans , Limit of Detection , Molecular Diagnostic Techniques/methods , Nanotechnology/methods , Pandemics/prevention & control , RNA, Viral/genetics , Specimen Handling/methods
3.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: covidwho-1140315

ABSTRACT

Despite the importance of nucleic acid testing in managing the COVID-19 pandemic, current detection approaches remain limited due to their high complexity and extensive processing. Here, we describe a molecular nanotechnology that enables direct and sensitive detection of viral RNA targets in native clinical samples. The technology, termed catalytic amplification by transition-state molecular switch (CATCH), leverages DNA-enzyme hybrid complexes to form a molecular switch. By ratiometric tuning of its constituents, the multicomponent molecular switch is prepared in a hyperresponsive state-the transition state-that can be readily activated upon the binding of sparse RNA targets to turn on substantial enzymatic activity. CATCH thus achieves superior performance (~8 RNA copies/µl), direct fluorescence detection that bypasses all steps of PCR (<1 hour at room temperature), and versatile implementation (high-throughput 96-well format and portable microfluidic assay). When applied for clinical COVID-19 diagnostics, CATCH demonstrated direct and accurate detection in minimally processed patient swab samples.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Point-of-Care Testing , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Humans , Limit of Detection
4.
Risk Manag Healthc Policy ; 13: 2489-2496, 2020.
Article in English | MEDLINE | ID: covidwho-921104

ABSTRACT

BACKGROUND: By estimating N95 respirator demand based on simulated epidemics, we aim to assist planning efforts requiring estimations of respirator demand for the healthcare system to continue operating safely in the coming months. METHODS: We assess respiratory needs over the course of mild, moderate and severe epidemic scenarios within Singapore as a case study using a transmission dynamic model. The number of respirators required within the respiratory isolation wards and intensive care units was estimated over the course of the epidemic. We also considered single-use, extended-use and prolonged-use strategies for N95 respirators for use by healthcare workers treating suspected but negative (misclassified) or confirmed COVID-19 patients. RESULTS: Depending on the confirmed to misclassified case ratio, from 1:0 to 1:10, a range of 117.1 million to 1.1 billion masks are required for single-use. This decreases to 71.6-784.4 million for extended-use and 12.8-148.2 million for prolonged-use, representing a 31.8-38.9% and 86.5-89.1% reduction, respectively. CONCLUSION: An extended-use policy should be considered when short-term supply chains are strained but planning measures are in place to ensure long-term availability. With severe shortage expectations from a severe epidemic, as some European countries have experienced, prolonged use is necessary to prolong supply.

6.
Open Forum Infect Dis ; 7(7): ofaa256, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-613751

ABSTRACT

The COVID-19 pandemic has taken over the world at an unprecedented scale. As Infectious Diseases fellows, this has come straight into the heart of our specialty and created a unique impact on our training progress and perspective. Here, we reflect on our early experiences during the first three months of battling COVID-19 in Singapore and glean some lessons for this pandemic and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL